Finite Element Based Second Moment Analysis for Elliptic Problems in Stochastic Domains
نویسنده
چکیده
We present a finite element method for the numerical solution of elliptic boundary value problems on stochastic domains. The method computes, to leading order in the amplitude of the stochastic boundary perturbation relative to an unperturbed, nominal domain, the mean and the variance of the random solution. The variance is computed as the trace of the solution’s two-point correlation which satisfies a deterministic boundary value problem on the tensor product of the nominal domain. This problem is discretized in the sparse tensor product space by a multilevel frame generated by standard finite elements. The computational complexity of the resulting approach stays essentially proportional to the number of finite elements required for the discretization of the nominal domain.
منابع مشابه
A Finite Element Method for Elliptic Problems with Stochastic Input Data
We compute the expectation and the two-point correlation of the solution to elliptic boundary value problems with stochastic input data. Besides stochastic loadings, via perturbation theory, our approach covers also elliptic problems on stochastic domains or with stochastic coefficients. The solution’s two-point correlation satisfies a hypo-elliptic boundary value problem on the tensor product ...
متن کاملAnalysis of the domain mapping method for elliptic diffusion problems on random domains
In this article, we provide a rigorous analysis of the solution to elliptic diffusion problems on random domains. In particular, based on the decay of the Karhunen-Loève expansion of the domain perturbation field, we establish decay rates for the derivatives of the random solution that are independent of the stochastic dimension. For the implementation of a related approximation scheme, like qu...
متن کاملError Estimates for the Finite Volume Element Method for Elliptic Pde’s in Nonconvex Polygonal Domains
We consider standard finite volume piecewise linear approximations for second order elliptic boundary value problems on a nonconvex polygonal domain. Based on sharp shift estimates, we derive error estimations in H –, L2– and L∞–norm, taking into consideration the regularity of the data. Numerical experiments and counterexamples illustrate the theoretical results.
متن کاملError Estimates for a Finite Volume Element Method for Elliptic PDEs in Nonconvex Polygonal Domains
We consider standard finite volume piecewise linear approximations for second order elliptic boundary value problems on a nonconvex polygonal domain. Based on sharp shift estimates, we derive error estimations in H1-, L2and L∞-norms, taking into consideration the regularity of the data. Numerical experiments and counterexamples illustrate the theoretical results.
متن کاملhp-DGFEM for Second Order Elliptic Problems in Polyhedra II: Exponential Convergence
The goal of this paper is to establish exponential convergence of hp-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the conver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009